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Abstract. The paper outlines an analytical treatment of the slowing down of positrons(e+)
implanted into condensed matter based on the rather weak assumption that the loss of energy
or momentum and the scattering angle are uniquely related. It goes beyond the mathematical
techniques developed for the slowing down of neutrons by allowing for the annihilation rate of
positrons and making use of the fact that for e+, owing to its small mass, the energy loss per
collision is usually very small compared with the kinetic energy. Explicit expressions are given
for the sample-averaged momentum distribution of positrons as a function of the positron age
and for the distribution function in space, momentum magnitude, and time of positronium that
is slowed down by the interaction with optical phonons.

1. Introduction

During the past four decades, the annihilation of positrons (e+) has become an indispensable
tool in condensed matter studies. The interpretation of the information contained in the
annihilation radiation is very often based on the assumption that the positrons are thermalized
in times that are short compared with the positron lifetime, so that annihilation ‘in flight’
(in contrast to annihilation while the e+ are diffusing in thermal equilibrium with their
environment or are trapped at, say, crystal imperfections) may be neglected. The time
interval between the implantation of an e+ into condensed matter until its kinetic energy
has been reduced to 3kBT/2 (kB = Boltzmann’s constant,T = absolute temperature) may
be subdivided into a slowing-down period and a thermalization period according to the
following criterion. In the slowing period the rate of loss of the e+ energy is temperature
independent, whereas the loss mechanisms dominating during the thermalization period
(usually involving phonons) depend on the sample temperatureT .

Typical kinetic energies with which e+ originating from theβ+-decay of a neutron-
deficient nuclide without moderation or acceleration are implanted into condensed matter
are in the range 0.1 MeV to a few MeV. Positrons in so-called slow-positron beams have
typically kinetic energies between a few keV and about 50 keV (a more descriptive name is
therefore ‘keV beams’). In these two modes of implantation the in-flight annihilation may
usually be neglected. This is not so for MeV beams (also called ‘relativistic’ e+ beams),
an example of which (the Stuttgart beam [1]) usually operates at an e+ kinetic energy of
4 MeV. Lauff [2] has estimated that in this case about 0.15 of the positrons implanted into
Pb annihilate in flight.
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For the most important loss mechanisms the energy-loss rate,−dE/dt , is known; so
for a given starting energy of the e+ the slowing-down and thermalization periods may
be estimated. The situation is quite different with regard to the spatial distribution of the
implanted positrons. Since the mass of the positrons is small compared to the atomic masses,
scattering through large angles is rather frequent. This has the well-known consequence that
already during the slowing-down period the e+ motion becomes diffusive and that, therefore,
the e+ do not have a characteristic range, in contrast to heavier electrically charged particles
such as protons, deuterons, orα-particles. For many applications, in particular for the use of
keV beams of adjustable energy to study depth profiles of trapping sites in layered materials,
it is of utmost importance to be able to calculate the spatial distribution of the implanted e+.

A related problem of some practical interest is the following: when e+ capture an
electron (e−) to form positronium, Ps= (e+e−), the energy-loss rate is suddenly reduced
since owing to the electrical neutrality of Ps the mechanisms primarily responsible for the
slowing down of the e+ cease to operate [3]. What are the chances for the neutral Ps
‘atoms’ to escape from the ‘spur’ of electrons and defect electrons (holes) that the e+ had
produced before Ps was formed? To answer this question we must be able to estimate, as a
function of timet and distancer, the probability distribution of Ps generated att = 0 and
r = 0.

So far, the types of question sketched in the preceding paragraphs have been approached
preferentially by Monte Carlo computer simulations since, except for a few very simplified
cases, the situations appeared too complicated to be handled analytically. This view appears
to have overlooked the fact that very similar problems arose about six decades ago in
investigations of the slowing down of neutrons in cosmic-ray studies [4–7] and not much
later in the design of nuclear reactors [8–13]. It is the aim of the present paper to adopt and,
where necessary, to supplement the earlier work on the slowing down of neutrons for the
positron and positronium case. It will be shown that it is possible to proceed quite a long
way by analytical techniques and that the numerical work can be postponed till the very
last stage of the calculations, when specific slowing-down and thermalization mechanisms
have to be taken into account. Moreover, the computations that may eventually be required
are quite straightforward once the mechanisms of energy loss and scattering are known.

The present paper gives a brief outline of the theory and of the underlying physical
ideas and mathematical techniques. A more detailed account was submitted to SLOPOS
(the Symposium on Slow Positron Beams, held in Cape Town in September 1998, to be
published inApplied Surface Science). As an example we treat the slowing down of light
particles due to their interaction with phonons describable by the Einstein model (so-called
optical phonons). This is thought to be a good model for the slowing down of positronium
in all positronium-forming substances with optical phonon branches (i.e., in all condensed
Ps-formers with the exception of the rare gases) [3].

2. The transport equation

In the following the particles (e+ or Ps) are described as an ensemble that is dilute enough
for any interaction between them to be neglected. The independent variables are the
location r, the momentumpΩ, where Ω is a unit vector (in the following frequently
referred to as the ‘flight direction’), and the timet . We will have to consider four different
distribution functions. The simplest of them are thedifferential number densityn(r,Ω, p; t)
and thedifferential particle fluxΦ(r,Ω, p; t). The quantityn(r,Ω, p; t) d3r d2Ω dp is
the number of particles in the six-dimensional ‘volume element’ d3r d2Ω dp (or, with
suitable normalization, the probability of finding a particle in this volume element) at time
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t . Number density and particle flux are related by

Φ(r,Ω, p; t) = vn(r,Ω, p; t), (1)

wherev is the velocity of the particles. Often we are not interested in the dependence on
all of the independent variables in (1). If we integrate overΩ or p, we simply drop these
quantities in the arguments. For example, theparticle densityis

n(r, t) =
∮ ∫ ∞

0
n(r,Ω, p; t) dp d2Ω (2)

(
∮

signifies that theΩ-integration extends over the full solid angle, 4π sr) and the particle
flux is

Φ(r, t) =
∮ ∫ ∞

0
v(p)n(r,Ω, p; t) dp d2Ω =: 〈v〉n(r, t), (3)

where the right-hand equation [3] defines the average speed〈v〉. The two other distribution
functions required, the event-rate densityΨ and the slowing-down densityΞ, will be defined
later.

Depending on the choice of the dependent variables and of the spatial coordinate system,
the transport equation, which expresses the local balance of the differential number density,
may be written in different forms. If we multiply the first form,

∂n(r,Ω, p; t)
∂t

= −Ω · gradΦ(r,Ω, p; t)− (Σs+Σa)Φ(r,Ω, p; t)

+
∫ ∞

0

∮
Σs(Ω′ → Ω, p′ → p)Φ(r,Ω′, p; t) d2Ω′ dp′ + S(r,Ω, p; t),

(4)

with the six-dimensional volume element d3r d2Ω dp, the left-hand side becomes therate
of changeof the number of particles in that volume element. The first term on the right-hand
side is then the differentialrate of leakageout of d3r, the second one the sum of thelosses
by scatteringinto other flight directions and byannihilation and trappingof e+ or Ps. This
term describes the loss by scattering in terms of themacroscopic scattering cross section
Σs = Σs(p), which is equal to the inverse of the mean free path between scattering events,
l−1
s . The macroscopic cross sectionΣa accounts for bothannihilation and trapping. For

non-relativistic positrons the annihilation rate and hence their mean lifetime,τ , are velocity
independent. Thus the contribution ofannihilation to the macroscopic cross sectionΣa may
be written as

Σa(p) = (τv)−1 =: l−1
a , (5)

wherela is the ‘mean free path for annihilation’. Thetrapping ratemay show resonances
as a function ofp; well below such resonances its contribution toΣa has the velocity
dependence (5), too.

The third term on the right-hand side of (4) accounts for thegain by in-scattering into
d3r d2Ω dp from flight directions other thanΩ and momentum magnitudes other thanp.
The relationship between the scattering cross sections appearing in the second and third
term on the right-hand side of (4) is

Σs(p) =
∫ ∞

0
Σs(p

′ → p) dp′ (6)

with

Σs(p
′ → p) :=

∮
Σs(Ω′ → Ω, p′ → p) d2Ω′. (7)
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Finally, the last term in (4) describes internal sources of e+ or Ps. In many cases it may
be replaced by suitable initial and boundary conditions, so that the equation to be solved
becomes homogeneous. In the discussion of the mathematical techniques we shall therefore
emphasize solving the homogeneous transport equation.

The transport equation (4) may be given another form by introducing thedifferential
event rate density

Ψ(r,Ω, p; t) := [Σs(p)+Σa(p)
]
Φ(r,Ω, p; t) (8)

as the dependent variable. For homogeneous media (i.e., macroscopic cross sections that
arer-independent) this leads to

1

(Σa+Σa)v

∂Ψ(r,Ω, p; t)
∂t

+ 1

Σs+Σa
Ω · gradΨ(r,Ω, p; t)+Ψ(r,Ω, p; t)

=
∫

Σs(p
′)

Σs(p′)+Σa(p′)

∮
Σs(Ω′ → Ω, p′ → p)

Σs
Ψ(r,Ω′, p′; t) dΩ′ dp′

+ S(r,Ω, p; t). (9)

In transport problems the direction of the net flow of particles provides us with a preferred
space direction, which we may use as thez-axis of a polar coordinate system. If the direction
cosine with respect to this direction is denoted by cosϑ , the homogeneous equation (9) may
be written as

1

Σs(p)+Σa(p)

[
1

v

∂Ψ(r,Ω, p; t)
∂t

+ cosϑ
∂Ψ(r,Ω, p; t)

∂z

]
+Ψ(r,Ω, p; t)

=
∫ ∞

0

Σs(p
′)

Σs(p′)+Σa(p′)

∮
Σs(Ω′ → Ω, p′ → p)

Σs(p′)
Ψ(r,Ω′, p′; t) d2Ω′ dp′.

(10)

Equation (10) is a form of the transport equation that is frequently used in astrophysics.
[14, 15]. It shows that for plane problems, in which there is only one relevant spatial
coordinate, solutions may be factorized with spatial factors exp(±κz), where κ is an
eigenvalue parameter [13]. We shall return to (10) in section 6.

Equations (4), (9), (10) are linear integro-differential equations that allow us, in principle,
to calculaten,Φ, or Ψ for a given scattering mechanism and for given initial and boundary
conditions. They are, however, too complicated to be solved exactly in non-trivial cases.
Our next task is to simply the equations in ways that allow us to obtain good approximate
solutions for specific problems. Important steps are the introduction of the momentum
scattering probability,gp(p′ → p), and of the fourth dependent variable, the slowing-down
densityΞ(r, p; t).

3. Momentum scattering probability and slowing-down density

The momentum scattering probability

gp(p
′ → p) := Σs(p

′ → p)

Σs(p)
(11)

is defined as the probability that a scattering process changes the magnitude of the particle
momentum from its initial valuep′ to a value in a unit interval aroundp. For the time
being we confine ourselves to cases in which the target is at rest in the laboratory system
(the system introduced at the beginning of section 2) and where internal degrees of freedom
of the target do not come into play. (Such scattering events are usually called ‘elastic’,
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although the nomenclature is not uniform.) Since under these circumstances the energy and
the momentum magnitude of scattered particles cannot increase,gp(p

′ → p) is zero for
p > p′. If βp′ denotes the lower limit of the momentum magnitudeafter the scattering
event, gp(p′ → p) is different from zero only ifp lies in the interval [βp′, p′] with
0 6 β < 1, called thecollision interval. The lower limit β = 0 is reached for two-body
collisions of particles with equal masses. The fact that, owing to the small e+ mass, for
most positron scattering mechanismsβ is very close to unity will play an important rôle in
the following developments.

The probability that a particle with initial momentum magnitudep′ > p has a
momentum magnitudep′′ < p after scattering is given by

G(p′, p) =
∫ p′′=p

p′′=βp′
= gp(p′ → p′′) dp. (12)

Obvious properties ofG(p′, p) are

∂G(p′, p)/∂p = gp(p′ → p), (13a)

G(p/β, p) ≡ 0, (13b)

G(p, p) ≡ 1. (13c)

From (13b), (13c) it follows that as a function of the first of its independent variables,
G(p′, p) alwaysvaries between 0 and 1, no matter how narrow the collision interval is.

An important quantity that may be expressed in terms of eithergp(p
′ → p) orG(p′, p)

is the averagelogarithmicmomentum loss per collision,ξp, defined as the loss per collision
of the logarithm of the momentum of particles with a given initial momentum magnitude
p. We thus have

ξp := 〈ln(p/p0)− ln(p′/p0)〉p′ = 〈ln(p/p′)〉p′ =
∫ p′=p

p′=βp
ln(p/p′)gp(p→ p′) dp′, (14)

wherep0 is an arbitrary reference momentum. Integration by parts gives us

ξp =
∫ p′=p

p′=βp

1

p′
G(p, p′) dp′ =

∫ lnp′=lnp

lnp′=lnp−ln(1/β)
G(p, p′) d lnp′. (15)

The slowing-down densityΞ(r, p; t) is defined as the number of particles per unit
volume that are slowed down past the momentump per unit time. From the density of the
rate of scattering events with initial momentum magnitudep′,

Σs(p
′)Φ(r, p′; t) = Σs(p

′)
Σs(p′)+Σa(p′)

Ψ(r, p′; t), (16)

we obtain that of the events leading to the final momentump by multiplying (16) by
G(p′, p) and integrating over all initial momenta. The slowing-down density is thus given
by

Ξ(r, p; t) :=
∫ p′=p/β

p′=p

Σs(p
′)

Σs(p′)+Σa(p′)
G(p′, p)Ψ(r, p′; t) dp′. (17)

Taking into account (13a), we deduce from (17)

∂Ξ(r, p; t)
∂p

=
∫ p′=p/β

p′=p

Σs(p
′)

Σs(p′)+Σa(p′)
gp(p

′ → p)Ψ(r, p′; t) dp′

− Σs(p)

Σs(p)+Σa(p)
Ψ(p). (18)
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Since according to (7) and (11) the scattering probability may be written as

gp(p
′ → p) =

(∮
Σs(Ω′ → Ω, p′ → p) d2Ω′

)/
Σs(p) (19)

we may use (18) to rewrite the transport equations, after integrating over all directions of
flight, as

∂Ξ(r, p; t)
∂p

− 1

Σs(p)+Σa(p)

[
1

v

∂Ψ(r, p; t)
∂t

+Σa(p)Ψ(r, p; t)
]
+ S(r, p; t)

= 1

Σs(p)+Σa(p)

∮
Ω · gradΨ(r,Ω, p; t) d2Ω. (20)

The pair of equations (17), (20) constitute a fourth form of the transport equation. They
are much simpler than (4), (9), or (10) since they no longer containΩ as an independent
variable save for on the right-hand side of (20), whereΩ still appears as a variable of
integration. It is the handling of this term that determines the various approaches to the
solution of the transport equation to be discussed in the remainder of the paper.

4. Narrow collision intervals

So far, the treatment of the linear transport equation has been general. In the present section
we make use, for the first time in the present paper, of the fact that for positrons the collision
interval is narrow, i.e. thatβ is close to unity.

Since the independent variables ofG(p1, p2) must appear in dimensionless combination,
for narrow collision intervals we may write

G(p1, p2) = G(ln(p1/p2)). (21)

Inserting (21) into (15) allows us to replacep2 by p1 as the variable of integration, giving
us

ξp =
∫ p1=p2/β

p1=p2

1

p1
G(p1, p2) dp1 =

∫ lnp1=lnp2+ln(1/β)

lnp1=lnp2)

G(p1, p2) d lnp1. (22)

Since in the limitβ → 1, G(p1, p2) is the only quantity in the integral of (17) that varies
appreciably over the collision interval, we may use (22) to replace (17) by

Ξ(r, p; t) = Σs(p)pΨ(r, p; t)
Σs(p)+Σa(p)

∫ p′=p/β

p′=p

1

p′
G(p′, p) dp′

= Σs(p)

Σs(p)+Σa(p)
pξpΨ(r, p; t). (23)

5. Sample-integrated quantities

One way of handling the bothersome right-hand side of (20) is to make use of the identity

div[Ψ(r,Ω, p; t)Ω] ≡ Ω · gradΨ(r,Ω, p; t) (24)

to integrate (20) and (23) over the entire sample (assumed to be homogeneous), and to
employ Gauss’s integral theorem in order to transform the right-hand side of (20) into an
integral extending over the sample surface. With the convention that dropping the space
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variables from the arguments of the field quantities indicates integration over the entire
sample, equation (20) becomes

∂Ξ(p, t)
∂p

− 1

Σs(p)+Σa(p)

[
1

v

∂Ψ(p, t)
∂t

+ΣaΨ(p, t)
]
+ S(p, t)

= 1

Σs(p)+Σa(p)

∮ ∫ ∫
surface

Ψ(r,Ω, p; t)Ω · d2A d2Ω, (25)

where d2A denotes the vectorial surface elements of the sample.
Equation (24) may be very useful in the interpretation of positron annihilation

experiments that integrate over the entire sample. Suppose that the sample is large enough
for the escape of e+ to be negligible. Then the right-hand side of (25) is zero. Making
use of the relationship (23) betweenΞ(p, t) and Ψ(p, t) gives us an inhomogeneous
linear first-order partial differential equation forΞ(p, t) that may be easily solved by the
mathematical technique to be described below. If the source emits positrons with a wide
momentum distribution (as aβ+-source does), then the integration of (25) must be followed
by convoluting the result with thep-distribution of the source.

Another situation of practical importance that may be described by means of (25) is the
following. Positrons are injected through part of the sample surface (e.g., a planar surface
of a slab). There are no internal sources; the escape of e+ from the sample is negligible.
Then the right-hand side of (25) is a known function ofp and t that may be absorbed into
S(p, t), and the mathematical problem is the same as in the preceding example.

If we Laplace transform (25) with respect to time and denote the Laplace-transformed
quantities by a tilde, e.g.

Ξ̃(p; η) =
∫ ∞

0
Ξ(p, t)exp(−ηt) dt, (26)

we obtain the ordinary first-order differential equation

∂Ξ(p; η)
∂p

− Σa(p)+ (η/v)Ξ̃(p; η)
pξp(p)Σs(p)

+ S̃(p; η)+ n(p, 0) = 0. (27)

Its general solution is

Ξ̃(p; η) = exp

(
η

∫
dp

pvξp(p)Σs(p)
+
∫

Σa(p) dp

pξp(p)Σs(p)

)
×
{
C −

∫ [
S̃(p; η)+ n(p, 0+)

]
exp

(
−
∫

Σa(p
′)+ (η/v(p′))

p′ξp(p′)Σs(p′)
dp′
)

dp

}
,

(28)

whereC is a constant of integration.
As an example, consider the creation ofn0 particles with a fixed momentump0 at time

t = 0. This may be taken into account either through the source termS̃(p, η) or through
the initial conditionn(p, 0) = n0δ(p − p0). In either case these terms are proportional to
a δ-function ofp0 − p′. This means that thep-integration inside the curly bracket of (28)
may be carried out immediately, yielding a constant that may be absorbed in the constant of
integration,C. We thus get for the Laplace transform of the sample-averaged slowing-down
density

Ξ̃(p; η) = C exp

[
−
∫ p0

p′=p

Σa(p
′) dp′

p′ξp(p′)Σs(p′)
dp′
]

exp

[
−η

∫ p0

p′=p

dp

p′vξpΣs(p′)

]
. (29)
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Making use of

exp(−aη) =
∫ ∞

0
δ(t − a) exp(−η) dt (30)

as well as of (1), (16), (23), we obtain for the sample-averaged number of particles of
momentump at time t

n(p, t) = C

Σs(p)v(p)pξp(p′)
exp

(
−1

τ
f (p)

)
δ(t − f (p)) (31)

with

f (p) :=
∫ p0

p′=p

dp′

p′v(p′)ξp(p′)Σs(p′)
. (32)

For simplicity, in (32) we have assumed the validity of (5), i.e., we have neglected trapping.
We see that because of theδ-function in (31) the exponential function becomes exp(−t/τ ),
in agreement with physical intuition.

Equations (31) and (32) may be simplified further by introducing the mean time between
scatterings,τs, according to

Σs = (vτs)
−1 (33)

and noting that for narrow collision intervals we may write

ξp = − 1

p

(
dp

dt

)
s

τs, (34)

where−(dp/dt)s is the rate of momentum loss due to scattering. We thus obtain finally

n(p, t) = n0

(dp/dt)s
exp(−t/τ )δ(t − f (p)) (35)

with

f (p) =
∫ p

p0

dp′

(dp′/dt)s
. (36)

Equation (35) forms a suitable starting point for analysing AMOC (=age–momentum
correlation) data on the slowing down of positronium that has been formed with kinetic
energies that are large compared with 3kBT/2 [16].

6. Weak anisotropy

Weak anisotropyrefers to a property of the distribution of flight directions. It implies that
the differential particle flux is well represented by

Φ(r,Ω, p; t) = 1

4π

[
Φ(r, p; t)+ 3J (r, p; t) cosϑ

]
(37)

and that

J (r, p; t)� Φ(r, p; t) (38)

holds. In (37), cosϑ denotes the direction cosine of the flight directionΩ with respect
to the z-axis of a suitably chosen polar coordinate system;J (r, p; t) is the density of the
particle current in thez-direction.

Unless the interaction leading to scattering is of extremely long range (as is, e.g., the
Coulomb interaction), its description in terms of s and p scattering in the laboratory system
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as well as the assumption thatΣs(Ω′ → Ω, p′ → p) has rotational symmetry should be
adequate. This means that we may write

Σs(Ω′ → Ω, p′ → p) = 1

4π

[
Σs(p

′ → p)+ 3Σ(1)
s (p

′ → p) cosϑ
]

(39)

with

Σ(1)
s (p

′ → p) = 2π
∫ +1

−1
Σs(Ω′ → Ω, p′ → p) cosϑ d cosϑ. (40)

For later use we introduce the quantities

Σm(p
′ → p) := Σs(p

′ → p)−Σ(1)
s (p

′ → p), (41)

called the macroscopicdifferential cross section for momentum transfer, and

Σm(p) =
∫ ∞

0
Σm(p

′ → p) dp′, (42)

the macroscopictotal cross section for momentum transfer (also known as transport cross
section).

Insertion of (37) and (39) into (10) gives us the following pair of coupled equations for
the event densityΨ(r, p; t) and the current densityJ (r, p; t):

1[
Σs(p)+Σa(p)

]
v

∂Ψ(r, p; t)
∂t

+ ∂J (r, p; t)
∂z

+Ψ(r, p; t)

=
∫ ∞

0

Σs(p
′ → p)

Σs(p′)+Σa(p′)
Ψ(r, p′; t) dp′, (43)

1[
Σs(p)+Σa(p)

]
v

∂J (r, p; t)
∂t

+ 1

3
[
Σs(p)+Σa(p)

]2

∂Ψ(r, p; t)
∂z

+ J (r, p; t)

=
∫ ∞

0

Σ(1)
s (p

′ → p)

Σs(p′)+Σa(p′)
J (r, p′; t) dp′. (44)

The integral on the right-hand side of (43) may be evaluated as follows, making use of (11)
and (19):∫ ∞

0

Σs(p
′ → p)

Σs(p′)+Σa(p′)
Ψ(r, p′; t) dp′

=
∫ p′=p/β

p′=p

Σs(p
′)

Σs(p′)+Σa(p′)
gp(p

′ → p)Ψ(r, p′; t) dp′

= ∂Ξ(r, p; t)
∂p

+ Σs(p)

Σs(p)+Σa(p)
Ψ(p). (45)

Because of the narrowness of the collision interval we are justified in replacing in the
integrand in (45)p′ by p except in the termΣ(1)

s (p
′ → p). Laplace transforming (43) and

(44) with respect to time results in the pair

∂J̃ (r, p; η)
∂z

+ Σa(p)+ (η/v)
Σs(p)+Σa(p)

Ψ̃(r, p; η)− ∂Ξ̃(r, p; η)
∂p

= Ψ(r, p; 0+)
(Σs(p)+Σa(p))v

, (46)

1

3(Σs(p)+Σa(p))

∂Ψ̃(r, p; η)
∂z

+ (Σm(p)+Σa(p)+ (η/v))J̃ (r, p; η) = 1

v
J (r, p; 0+).

(47)
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Differentiating (47) with respect toz and eliminating∂J̃ /∂z gives us

1

3
[
Σs(p)+Σa(p)

] [
Σm(p)+Σa(p)+ (η/v)

] ∂2Ψ̃(r, p; η)
∂z2

− Σa(p)+ (η/v)
Σs(p)+Σa(p)

Ψ̃(r, p; η)+ ∂Ξ̃(r, p; η)
∂p

= 1

(Σm(p)+Σa(p))v + η
∂J (r, p; 0+)

∂z
− 1

(Σs(p)+Σa(p))v
Ψ(r, p; 0+).

(48)

Using the Laplace-transformed equation (23),Ψ̃(r, p; η) may be replaced bỹΞ(r, p; η).
We thus have succeeded in deriving a linear parabolic differential equation forΞ̃(r, p; η)
with the special feature that its coefficients do not depend on the independent variablez.
This feature allows us to transform (48) into a diffusion equation by changing the variables
[17]. Since the general solution of the inhomogeneous equation (48) may be found by adding
a particular solution to the general solution of the homogeneous equation, we concentrate
on the latter equation.

With Ξ̃(r, p; η) as the dependent variable, the homogeneous equation following from
(48) reads

∂2Ξ̃
∂z2
+ 3Σs(Σm+Σa+ (η/v))pξp ∂Ξ̃

∂p
− 3(Σm+Σa+ η/v))(Σa+ η/v)Ξ̃ = 0. (49)

The zero-order term in (49) may be removed by introducing as the dependent variable

χ̃(r, p; η) = Ξ̃(r, p; η) exp

[
−
∫

Σa(p
′)+ (η/v(p′))

Σs(p′)p′ξp(p′)
dp′
]
. (50)

Choosing

s = 1

3

∫ p0

p

dp′

p′ξp(p′)Σs(p′)[Σm(p′)+Σa(p′)+ (η/v(p′))] (51)

as the independent variable and going back to three space dimensions gives us finally

∂χ̃(r, p; η)/∂s = ∇2χ̃(r, p; η). (52)

This is the well-known diffusion (or heat-conduction) equation. Thus, all of the analytical
and computational techniques developed for solving this equation for given initial and
boundary conditions are available for the slowing-down problem of light particles, provided
that the conditions stated at the beginning of this section are satisfied.

The basic ideas of the present section were developed for treating the slowing down of
neutrons [7, 8, 10, 12]. In its simplest form (stationary state, absorption cross sectionΣa

small compared with the scattering cross sectionΣs), equation (52) may be written as

∂Ξ
∂s
−∇2Ξ = 0 (53)

with

s =
∫ E0

E

lm(E
′)ls(E′)

3ξE(E′)E′
dE′. (54)

Here, in accordance with the usage in neutronics, the kinetic energyE has been introduced
as a variable of integration and the macroscopic cross sections have been replaced by
the corresponding mean free paths (cf. section 2 and equation (55)).ξE is the average
logarithmic energy loss per collision, which in the non-relativistic case is related toξp by
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ξE = 2ξp. In neutronics,s = s(E) is called the ‘age’ of neutrons that were slowed down
from an initial energyE0 to the energyE, presumably because of the analogy ofs with
the time-variable in diffusion problems. In the present context we refrain from using this
terminology for two reasons.

(i) For positrons, ‘age’ is used for the time that the e+ have spent in the sample when
they annihilate, irrespective of what their energy is at that moment (cf. section 5).

(ii) s does not have the dimension of time but of a length squared. As will be dem-
onstrated below, apart from a proportionality factors is the mean square displacement that
the particles have undergone during slowing down from the initial energyE0 to the energy
E. Nevertheless, for historical reasons the theory developed in this section will be referred
to as ‘Fermi’s theory of aging’ or, for short, ‘age theory’.

If we introduce the mean time between scattering events,τs, according to

ls = vτs (55)

we may write the average logarithmic energy loss per collision as

ξE = − 1

E

(
dE

dt

)
s

τs, (56)

where(dE/dt)s denotes the rate of energy loss by scattering. Inserting (55), (56) into (54)
gives us

s = −
∫ E0

E′=E

v(E′)lm(E′)
3(dE′/dt)s

dE′ =
∫ E

E0

D(E′)
(dE′/dt)s

dE′. (57)

In (57) we have made use of the expression

D(E) = vlm/3 (58)

for the diffusivityD of the particles. In the non-relativistic limit we may write, for particles
of massm,

s = − 2

3m

∫ E′=E0

E′=E

E′τm(E
′)

(dE′/dt)s
dE′, (59)

where

τm = v/lm (60)

is the relaxation time for momentum relaxation.
In the presence of internal particle sources, a source term has to be added on the right-

hand side of (53). Let us assume that in an unbounded space there is a particle source at
r = 0 and nowhere else, and that this source emits particles with a well-defined kinetic
energyE0. Then the solution of (53) with the normalization∫

Ξ(r, E;E0) d3r = 1 (61)

is [17]

Ξ(r, E;E0) = (4πs)−3/2 exp(−r2/4s). (62)

From (62) it follows that

〈r2
Ξ〉 :=

∫
r2Ξ(r, E;E0) d3r = 6s. (63)

Hence in this case 6s has the physical meaning of the mean square of the distance over
which the particles slow down toE from their starting energyE0. (The integration in (61)
and (63) extends over all space.)
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7. An application of age theory: slowing down by optical phonon scattering

For light particles such as positrons, the theory developed in section 6 is general. It may
be applied to any slowing-down mechanism satisfying the conditions of validity set out in
section 6. As an example, we shall treat the slowing down due to scattering by optical
phonons described by Einstein’s model.

Einstein’s model postulates that the motion of the atoms in condensed matter can be
described by phonons with a frequencyωop that is independent of the phonon wavenumber.
The notationωop alludes to the fact that the Einstein model often provides a good description
of so-called ‘optical phonons’, i.e. of those phonon modes whose frequency approaches a
finite value when the phonon wavenumber approaches zero. Within the framework of this
model it is natural to describe the coupling between the particles and the phonons by a
wavenumber-independent deformation–potential parameter,Eop.

In the model just outlined, the scattering probability is independent of the flight
directions before and after scattering, and hence of the scattering angleψ . This permits
the transport equation to be solved exactly if spatial homogeneity is assumed, i.e., if the
field variables are independent ofr [18]. In a material of densityρ, for particles of mass
m the inverse of the momentum relaxation time,τ−1

m , and the normalized energy loss rate,
−dε/dt , are given by†

τ−1
m

−dε/dt

}
=
(
m

2

)3/2E2
op cosech(h̄ωop/2kBT )

πρh̄2(h̄ωop)1/2
[ARe(ε − 1)1/2± A−1(ε + 1)1/2] (64)

with the abbreviations

ε := E/h̄ωop A := exp(h̄ωop/2kBT ). (65)

For ε > 1, it follows from (64) that

− 1

τm

dε

dt
= m3E4

op cotanh(h̄ωop/2kBT )

2π2ρ2h̄5ωop

{
ε − ε∗} (66)

with

ε∗ := cotanh(h̄ωop/kBT ) =: E∗/h̄ωop. (67)

Inserting (66) into (59) gives us the mean square of the slowing-down distance as a
function of the kinetic energyE as

6s = h̄ωop

mB2
tanh

(
h̄ωop

2kBT

)∫ ε′=E0/h̄ωop

ε′=ε

ε′

ε′ − ε∗ dε′

= 1

mB2
tanh(h̄ωop/2kBT )

{
E0− E + E∗ ln

(
E0− E∗
E − E∗

)}
(68)

with

B := m3/2(Eop/h̄)
2

2πρ(2h̄ωop)1/2
. (69)

Of the parameters appearing in (68),ωop and thusE∗ (cf. (67)) may be deduced from
optical or specific-heat data on the material under consideration. In the application to pos-
itronium, m is twice the electron mass,me. The quantitiesE0 andB are related to the

† It may appear puzzling that the energy loss rate is obtained by multiplying by±h̄ωop the phonon absorption
and emission terms in the expression forτ−1

m rather than that forτ−1
s . The explanation is that in the present case

the effect of the weight factor (1− cosψ) (ψ = scattering angle) in the momentum relaxation rate cancels by
symmetry, soτs = τm.
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formation and slowing down of Ps,E0 being the (average) initial kinetic energy of Ps. If
the conditionE � E∗ is satisfied, the relationship

E1/2 = E1/2
0 − (h̄ωop)

1/2Bt (70)

holds, wheret is the time that has passed since the Ps was formed [3]. Making use of
the relationshipE1/2 = (2m)−1/2p, wherep is the momentum of the annihilating electron
positron pairs, the AMOC technique [16] allows us to determine thet-dependence of the
p-distribution and to deduce from this bothE0 andB(h̄ωop)

1/2, provided that they lie in
the ranges accessible to the technique. If we use (70) to define a slowing-down time

tsd= B−1(E0/h̄ωop)
1/2 (71)

and insert (71) into (68), we obtain

6s = h̄ωop

m
t2sd tanh(h̄ωopt/2kBT )

(
1− E

E0
+ E

∗

E0
ln
E0− E∗
E − E∗

)
. (72)

With m = 2me and, as typical values for Ps-forming materials, 2πωops= 1× 1014 s−1 and
tsd= 25× 10−12 s [16], the square root of the numerical prefactor in (72) becomes

(h̄ωopt
2
sd/m)

1/2 = 4.8 µm. (73)

With the further assumptionsρ = 1× 106 kg m−3 andE0 = 6.8 eV, the relationship

(Eopt/h̄)
2 = 2πρ(2E0)

1/2m−3/2t−1
sd (74)

gives us for the parameter characterizing the deformation potential

Eop = 0.3× 1010 eV m−1. (75)

This means that a displacement of the host atoms by 10−10 m changes the positron energy
by 0.3 eV, which is certainly a plausible order of magnitude, indicating that the model
[3] is capable of accounting for the slowing-down observations on Ps-formers with optical
phonons.

The preceding treatment disregards the position annihilation. Often this is a good
approximation since, unless6a� 6s, one cannot study the slowing-down process in detail.
In the present case the quadratures required for taking into account6a in calculating the
Laplace transformΞ̃ may be performed in closed form by the procedure developed in [3].
However, since the resulting expressions are fairly complicated we refrain from giving them
here. For moderately large6a the energyĚ at which (68) has to be cut off because of the
finite mean lifetimeτ of the e+ may be estimated simply from

τ =
∫ E′=Ě

E′=E0

1

(dE′/dt)s
dE′. (76)

The integral has been evaluated in the appendix of reference [3].
The present numerical example corresponds to(E0/h̄ωop)

1/2 = 4.0 and, if we attribute
to p-Ps the mean vacuum lifetimeτ = 1.25× 10−10 s, to Bτ = 20. This means that
in this case taking into account6a would modify equations (68) and (70) only slightly.
On the other hand, the estimatetsd ' τ/5 indicates that in calculating the mean square
slowing-down distance 6s = 〈r2

4〉, the mechanisms limiting the diffusivity ofthermalized
Ps, in particular the scattering by acoustical phonons, must be allowed for. Nevertheless,
the numerical estimate (73) in conjunction with (72) indicates that for Ps〈r2

4〉 is much larger
than the extension of the spur or the ‘short track’ discussed in models of Ps formation (see,
e.g., [19]). It appears that so far this aspect of Ps formation has not received adequate
attention.
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A noteworthy feature of (68) and (69) is that the mean displacement(6s)1/2 is
proportional tom−2. This has the consequence that for muonium Mu= (µ+e−), with
m = 103me, the numerical value (73) is about four powers of ten smaller than for Ps (in
the present example, equal to 0.45 nm). This means that a fair fraction of Mu ‘atoms’ will
interact with the spur produced by their ownµ+ before they formed Mu, in striking contrast
to the case for Ps.
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